
Copy-on-Write in the PHP Language

Akihiko Tozawa Michiaki Tatsubori
Tamiya Onodera

IBM Research, Tokyo Research Laboratory
atozawa@jp.ibm.com,

mich@acm.org,tonodera@jp.ibm.com

Yasuhiko Minamide
Department of Computer Science

University of Tsukuba
minamide@cs.tsukuba.ac.jp

Abstract
PHP is a popular language for server-side applications. In PHP, as-
signment to variables copies the assigned values, according to its
so-called copy-on-assignment semantics. In contrast, a typical PHP
implementation uses a copy-on-write scheme to reduce the copy
overhead by delaying copies as much as possible. This leads us to
ask if the semantics and implementation of PHP coincide, and ac-
tually this is not the case in the presence of sharings within values.
In this paper, we describe the copy-on-assignment semantics with
three possible strategies to copy values containing sharings. The
current PHP implementation has inconsistencies with these seman-
tics, caused by its naı̈ve use of copy-on-write. We fix this problem
by the novel mostly copy-on-write scheme, making the copy-on-
write implementations faithful to the semantics. We prove that our
copy-on-write implementations are correct, using bisimulation with
the copy-on-assignment semantics.

Categories and Subject Descriptors D.3.0 [Programming Lan-
guages]: General

General Terms Design, Languages

1. Introduction
Assume that we want to maintain some data locally. This local data
is mutable, but any change to it should not affect the global, master
data. So, we may want to create and maintain a copy of the master
data. However such copying is often costly. In addition, the copied
data may not be modified after all, in which case the cost of copy
is wasted. This kind of situation leads us to consider the copy-on-
write technique.

Copy-on-write is a classic optimization technique, based on the
idea of delaying the copy until there is a write to the data. The
name of the technique stems from the copy of the original data
being forced by the time of the write. One example of copy-on-
write is found in the UNIX fork, where the process-local memory
corresponds to the local data, which should be copied from the
address space of the original process to the space of the new
process by the fork operation. In modern UNIX systems, this copy
is usually delayed by copy-on-write.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’09, January 18–24, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-379-2/09/01. . . $5.00

Another example is found in the PHP language, a popular script-
ing language for server-side Web applications. Here is an example
with PHP’s associative arrays.

$r["box"] = "gizmo";
$l = $r; // assignment from $r to $l
$l["box"] = "gremlin";
echo $r["box"]; // prints out gizmo

The change of $l at Line 3, following the assignment $l = $r, only
has local effects on $l which cannot be seen from $r. The behavior
or semantics in PHP is called copy-on-assignment, since the value
of $r seems to be copied before it is passed to $l. We can consider
the copy-on-write technique to implement this behavior. Indeed, the
by far dominant PHP runtime, called the Zend runtime1, employs
copy-on-write and delays the above copy until the write at Line 3.

For readers in the functional or declarative languages commu-
nity, the semantics of PHP arrays may first sound like a familiar
one, e.g., PHP arrays are similar to functional arrays. However
their similarity becomes less clear as we learn how we can share
values in PHP. In PHP, we have the reference assignment state-
ment, =&, with which we can declare a sharing between two vari-
ables. Such a sharing breaks the locality of mutation. For example,
the write to $y is visible from $x in the following program.

$x[0] = "shares me";
$y =& $x; // creates sharing
$y[0] = "shared you";
echo $x[0]; // shared you

Now, our question is as follows. The copy-on-write is consid-
ered as a runtime optimization technique to reduce useless copies.
Then, does the use of copy-on-write preserve the equivalence to the
original semantics, in which we did not delay copying? This equiv-
alence might be trivial without a sharing mechanism as above, but
is not clear when we turn to PHP. In PHP, we can even share a
location inside a value. This is where the problem gets extremely
difficult.

$r["box"] = "gizmo";
$x =& $r["box"]; // creates sharing inside $r
$l = $r; // copies $r
$l["box"] = "gremlin";
echo $r["box"]; // what should it be ?

The result of this program should reflect how exactly PHP copies
arrays when they contain sharings. Our discussion will start from
clarifying such PHP’s copy semantics.

In this paper, we investigate the semantics and implementation
of PHP focusing on the copy-on-write technique and its problems.
Our contributions in this paper are as follows.

1 Available at http://www.php.net.

200

• We develop three copy-on-assignment models of PHP, each dif-
fering in the copy semantics, i.e., how sharings inside arrays are
copied. Three copy semantics are called shallow copy, graphi-
cal copy, and deep copy. To capture sharings inside values, our
formal model uses graphs and their rewriting.

• We identify several problems in the current PHP implementa-
tion, including the inconsistency from the copy-on-assignment
semantics. In particular, we point out the inversion of execution
order problem, which is caused by the copy-on-write optimiza-
tion.

• We propose copy-on-write implementations of PHP based on
the novel mostly copy-on-write scheme, which fixes the inver-
sion problem by adding moderate overhead to the implementa-
tion. This fix works for all three copy strategies.

• We prove that the corresponding copy-on-assignment and
mostly copy-on-write models do coincide. We use a bisimu-
lation to state this coincidence. We develop proof techniques
for our graph rewriting semantics using a domain theoretic ap-
proach.

• We report that our experimental implementation of the mostly
copy-on-write scheme gives a desirable performance without
significant overhead.

1.1 Outline
Let us outline the remainder of this paper. Section 2 covers the
basics and the copy-on-assignment models. Section 3 explains the
copy-on-write, its problem, and our solution by mostly copy-on-
write. Section 4 discusses the correctness of our solution. Section 5
reports the experimental results. Section 6 surveys the related work,
and Section 7 concludes.

2. Copy-On-Assignment Model
In this section, we discuss the semantics of PHP, called copy-on-
assignment, focusing on how array values are copied when they
contain sharings.

2.1 Preliminaries
In this paper, we use graph representations to capture the data and
store in PHP. In a graph G, each node and edge of G is labeled.
Edges of G are labeled by c ∈ Const . Each node is labeled by an
element of Const " {!} where ! denotes array nodes. Each array
node has a finite number of outgoing edges with non-overlapping
labels c reaching nodes representing each element of the array
associated with key c. Otherwise nodes are leaves representing
constants.

We denote by G # v
c−→ v′ that there is a c-labeled edge

from v to v′. The dynamic environment is modeled by adding
the root node Λ to G. The root node is itself labeled by !, and
may have several successor edges labeled by either $x ∈ Var
or c ∈ Const representing the variable environment and constant
pool2, respectively. Each c-labeled edge is associated with a node
vc, which is again labeled by c, such that G # Λ

c−→ vc.
The subset of PHP we deal with follows the syntax given in

Figure 1, in which the overline ¯ is used to denote possibly 0-
length sequences. Now the semantics of variable and array lookup
expressions are given as follows.

G # c ⇓ vc
G # Λ

$x−→ v
G # $x ⇓ v

G # e ⇓ v G # e′ ⇓ vc

G # v
c−→ v′

G # e[e′] ⇓ v′

2 We introduce such edges from Λ to vc for technical reasons, i.e., to avoid
garbage collection of constant nodes.

Stmt ! s ::= $x[e] = e | $x[e] =& $x[e] | unset($x[e]) | echo e | s; s

Expr ! e ::= $x | c | e[e] | · · ·
Const ! c ::= null | 0 | 1 | · · · | ”” | ”a” | ”b” | · · ·

Var ! $x ::= $x, $y, · · ·

Figure 1. Reduced Syntax of PHP

We skip the side effects of expressions since they are irrelevant
to the topic of the paper. To simplify the presentation, the syntax
in Figure 1 even accepts some expressions rejected by the Zend
implementation as syntax error, e.g., null[0].

2.2 Copy-on-Assignment
The assignment, or store, statement $x[e] = e′ updates the dy-
namic environment. We model this behavior by a binary relation

G
$x[e]= e′'−→ G′. Now consider the following program.

$r["val"] = 1;
$l = $r;
$l["val"] = 2;
echo $r["val"]; // prints 1

As explained in the introduction, $l = $r creates a copy of $r, and
subsequent writes to $l do not affect $r. This behavior can be
illustrated by the following graph rewrites.

Λ
$r !! !

”val” !! 1
$l = $r"−→ Λ

$r !!

$l

""

!
”val” !! 1

!
”val” !! 1

$l[”val”]= 2"−→ Λ
$r !!

$l

""

!
”val” !! 1

!
”val” !! 2

When drawing a graph we elide constant edges under Λ. The

rewrite G
$x[e]= e′'−→ G′ is broken down into several steps.

• Copying the subgraph at v′ such that G # e′ ⇓ v′.

• Looking up a path Λ
$x−−→ v1

c1−−→ · · · vn
cn−−→ vn+1 where e

evaluates to constant nodes for c1, . . . , cn.
• The copied graph replacing the node vn+1.

The formal definition will be given later, after we look through PHP
references and their problems.

2.3 References in PHP
As long as we use the ordinary assignment $x[e] = e′, the graph
representing PHP’s dynamic store does not contain any sharing
structure. At this moment, programmers are in a safer but restricted
world, where updates of values have no destructive effects seen
from remote places. However, PHP also provides the reference
assignment operator $x′[e′] =& $x[e], by which one can enjoy any
advantage of destructive effects as in C or Java, e.g., creating
sharing structures, creating back edges or cycles, implementing
algorithms otherwise inefficient, and so on.

The syntax =& indicates the combination of address-of (&) and
assignment operator (=) in C. However, there is an important dif-
ference in the meaning between PHP and C.

$r["hand"] = "empty";
$x =& $r["hand"]; // creates a sharing

201

1: $r[0] = "empty";
2: $x =& $r[0];
3: $l = $r;
4: $l[0] = "coin";
5: echo $r[0];

Λ
$r !!

$x

##
!

0!! "empty"
$l = $r"−→ Λ

$r !!

$x

##

$l
""

!
0!! "empty"

!
0

$$
$l[0]= ”coin”"−→ Λ

$r !!

$x

%%

$l
""

!
0!! "coin"

!
0

&&

1: $r[0] = "empty";
2: $x =& $r[0];
3: unset($x);
4: $l = $r;
5: $l[0] = "plenty";
6: echo $r[0];

Λ
$r !!

$x

##
!

0!! "empty"
unset($x)"−→ Λ

$r !! !
0!! "empty"

$l = $r"−→ Λ
$r !!

$l

''

!
0!! "empty"

!
0!! "empty"

$l[0]= ”plenty”"−→ Λ
$r !!

$l

''

!
0!! "empty"

!
0!! "plenty"

1: $r[0] = "trick";
2: $x =& $r[0];
3: $l = $r;
4: unset($x);
5: $l[0] = "treat";
6: echo $r[0];

Λ
$r !!

$x

%%
!

0!! "trick"
$l = $r"−→ Λ

$r !!

$l
""

$x

%%
!

0!! "trick"

!
0

$$
unset($x)"−→ Λ

$r !!

$l
""

!
0!! "trick"

!
0

$$
$l[0]= ”treat”"−→ Λ

$r !!

$l
""

!
0!! "treat"

!
0

$$

Figure 2. Some examples in copy-on-assignment PHP(s)

$r["hand"] = "coin";
unset($r); // freeing $r
echo $x; // safe

This example demonstrates that in PHP, there is no dangling pointer
problem, i.e., reading from a reference whose referent already
does not exist. We here model references by shared nodes, i.e.,
nodes with multiple incoming edges. References in PHP do not
indicate any direction from a reference to its referent. Rather, two
references, which are symmetric to each other, simply share the
same value. So, removing the one side, i.e., $r[”hand”], results in
a value still seen from the other side $x being no longer shared3.

Λ
$r !! !”hand” !! "empty"

$x =& $r[”hand”]"−→

Λ
$r !!

$x
((

!
”hand” !! "empty"

$r[”hand”]= ”coin”"−→

Λ
$r !!

$x
((

!
”hand” !! "coin"

unset($r)"−→ Λ
$x !! "coin"

Now, by combining two types of assignments = and =&, we may
even copy a value, e.g., $l = $r, in which a reference assignment,
e.g., $x =& $r[”hand”], has introduced a sharing. What will happen
then? The right answer is not readily obvious, and actually it seems
to be an important design point of the language.

Let’s see what happens by running the first program in Figure 2.
The Zend runtime interpreting this program prints out ”coin”,
which means that array entries $r[0] and $l[0] are shared before
the write at Line 4. Such a sharing should have been created at
$l = $r at Line 3. This evidently shows that while copying a value
held by $r, the Zend runtime skips the shared node, and instead
adds $l[0] to the sharing. We call this behavior shallow copy.

2.4 Discussion of PHP’s Copy Semantics
Having a specification of a language is important in many respects.
Such a specification is necessary for creating new implementations
of the language. It also helps us discuss the correctness of opti-
mizations, or design a program analysis, e.g., PHP string analysis
by Minamide (Minamide 2005). Unfortunately, in the case of PHP,

3 PHP references are also close to hard links in UNIX file systems.

PHP(s) $r !! !))
$l= $r'−→

$l !! !**

PHP(d) $r !! !))
$l= $r'−→

$l !! ! !! ! !! · · ·

PHP(g) $r !! !))
$l= $r'−→

$l !! !))

Figure 3. Copying a value in three semantics

we think specifications are not given sufficiently. The official man-
ual4 explains the copy-on-assignment as follows:

In PHP, variables are always assigned by value. That is
to say, when you assign an expression to a variable, the
entire value of the original expression is copied into the
destination variable.

However, it is not clear from here, or elsewhere in the manual, how
values containing references are copied. As a result, the current
behavior of the implementation sometimes causes a confusion, and
is often criticized, e.g., in the PHP bugzilla mailing list5.

In this paper, we give a formal copy-on-assignment model of the
shallow copy. For comparison, we also discuss two other possible
copy semantics classified as variations of deep copy, in the sense
that they do not create sharings between the original and copy.
Note that our intent here is not to discuss which one of the copy
semantics is superior, but is rather to give their better understanding
that might improve the current situation.

The following three PHP semantics differ in the way they copy
values in assignment statements.

• (s)hallow copy semantics, referred to as PHP(s).

4 http://www.php.net/docs.php
5 http://bugs.php.net/. For example, some classifies the shallow copy
in PHP as a bug, and the other argues that the shallow copy may cause a
security problem by leaking references to copied values.

202

• (d)eep copy, or unraveling semantics, referred to as PHP(d).
• (g)raphical copy semantics, referred to as PHP(g).

The first is closest to the Zend runtime. It does not copy shared
nodes, which are then further shared by original and copied values.
The deep copy semantics may involve an infinite unraveling of a
graph when we try to copy cyclic structures. The last alternate
semantics is graphical copying, which copies the induced subgraph,
preserving the structure. See Figure 3 for their differences when
copying a cycle.

Let us give some examples. First, go back to the first example
in Figure 2. In PHP(d) and PHP(g), $l = $r at Line 3 completely
copies an array, so that $l[0] = ”coin” does not affect $r. Hence
we get results different from PHP(s).

Then, move to the second program in the same figure. This
time, even if we use the shallow copy semantics, $l = $r at Line 4
copies the entire array. The difference from the first program is the
unset($x) at Line 3, which removes variable $x, which had shared
a node with $r[0]. This is another point where PHP references
differ from C pointers or ML references. In PHP, a sharing once
created can disappear if the other side of the sharing is removed.
This poses some difficulty in the implementation of shallow copy,
in which copying a node requires the information as to whether
or not the node is shared. In other words, how values are copied
in PHP(s) relies on reference counts. Indeed, the Zend runtime
uses a reference counting mechanism here. In contrast, PHP(d)
and PHP(g) do not require reference counting, at least for correct
implementation.

Let us give another example that might illustrates how the differ-
ence in copying strategy has a practical relevance. Look at function
calls in PHP.

function foo($a) { $a["passwd"] = ":-X"; }
$x = null;
foo($x);
echo $x["passwd"]; // prints nothing

As we see, by default, parameter passing at function calls corre-
spond to the assignment = from actual parameters to formal pa-
rameters. So, writes to formal parameters inside the function body
should not be seen from the caller. On the other hand, if we really
need a function that updates given actual parameter variables, we
use the pass-by-reference mechanism, corresponding to =&.

function bar(&$a) { $a["answer"] = ":-)"; }
$x = null;
bar($x);
echo $x["answer"]; // prints :-)

One might see the similarity of the pass-by-reference annotation in
PHP, to const modifiers in C++, final fields in Java, or even ML
types identifying data structures with destructive references. We
think their similarity is the enforcement of the program safety. A
program can be safer if it restricts the portion of unwanted updates
of values, and is given annotations wherever any such destructive
update may or may not occur.

Let us return to the discussion of PHP’s copy semantics. If we
can measure the safety of program semantics by the possibility of
unsafe updates, PHP(d) may be the safest strategy as it creates the
least numbers of references by erasing them at each assignment.
On the other hand, PHP(s) is less safe than other copying strategies.
For example, PHP(s) can cause a leakage of password information
from foo($x) by doing $passwd =& $x[”passwd”] before calling
foo($x).

2.5 Graph Transformation
In the rest of this section, we define the formal copy-on-assignment
semantics of PHP. First, let us summarize the notations and graph
operations used throughout. The graphs we deal with are the rooted
graphs studied in the context of term graph rewriting systems
(Barendregt et al. 1987; Barendsen and Smetsers 1992). Formally,
a graph G is a tuple (V G, λG, δG) where

• V G is a node set,
• λG ∈ V G → C is a labeling function on a certain node label

set C,
• δG ∈ V G × L ⇀ V G is a partial edge function on the edge

label set L.

We write G # v
!−→ δG(v, $) when δG(v, $) is defined. A rooted

graph G = (V G, ΛG, λG, δG) is a graph with unique root node
ΛG ∈ V G. We denote by EG the set of edges in G, i.e., the domain
of the partial function δG. Here are some additional definitions.

Definition 1 (BASIC OPERATORS AND RELATIONS OVER GRAPHS).
(i) We denote by G = {v !−→ w} a graph with two nodes v and w,
and a single edge (v, $) '→ w.
(ii) The union ∪ and disjoint union " of graphs are the union and
disjoint union of their nodes, and edge functions seen as binary
relations over EG × V G.
(iii) By the notation G[(v, $) '→ v′], we denote a graph G′ =
(V G, λG, δG[(v, $) '→ v′]) whose edge function is updated. Also
G[v '→ c] denotes a graph G′ = (V G, λG[v '→ c], δG) obtained
by relabeling a node.
(iv) We denote by rcG(v) the reachable node set from v on G.
(v) The induced subgraph of G on node set V ⊆ V G, written G|V ,
is a subgraph of G with its node set V and containing all edges
in G from V to V . We denote by G|vV a rooted subgraph with its
root v ∈ V . This v can be omitted if v = ΛG(∈ V). We define
gc(G) = G|rcG(ΛG).
(vi) We write inG(w) for a set of edges (v, $) ∈ EG such that
δG(v, $) = w. A set of outgoing edges, written outG(V), is de-
fined for a node set V ⊆ V G as a set such that (v, $) ∈ outG(V)
(⊆ EG) iff v ∈ V and δG(v, $) /∈ V .
(vii) A rooted graph H is homomorphic to G written G + H , if
there is a label-preserving mapping ϕ ∈ V H → V G such that
1) ϕ(ΛH) = ΛG, 2) (v, $) ∈ EH iff (ϕ(v), $) ∈ EG, and 3)
ϕ(δH(v, $)) = δG(ϕ(v), $) if (v, $) ∈ EH . We say G and H are
isomorphic, written G , H , if G + H and H + G.

The redirections are the basic steps of our transformation. We
use two kinds of redirections: edge redirection and node redirec-
tion, denoted by [ε ↪→ v] and [v ←↩ w], respectively. Here are
examples.

Λ

##!
!!!

!! v

w
! !! · · ·

ˆ
(w, !) ↪→ v

˜
=

Λ

##!
!!!

!! v

w

! ++""""

Λ
%%!!

##!
!!!

v

w !! !

ˆ
v ←↩ w

˜
= Λ

,,!! -- w !! !

The edge redirection redirects a single edge ε (= (w, $)) to a node
v. Note that some nodes in G may become unreachable after this
rewrite, and will be removed. We can also simply remove an edge ε
by writing [ε ↪→ ⊥]. The node redirection means that all incoming
edges to v are redirected to w. The edge redirection is formally
defined as G[ε ↪→ v] = gc(G[ε '→ v]). We can extend this rewrite

203

G # Λ
c−−→ v

G # c ⇓ v
[CONST] G # Λ

$x−→ v
G # $x ⇓ v

[VAR]
G # e ⇓ v G # e′ ⇓ v′ G # v

λG(v′)−→ v′′

G # e[e′] ⇓ v′′
[LOOKUP]

G # e ⇓ v G # e′ ⇓ v′ (G′, ε) = find(copy(x)(G, v′), Λ, $x; λG(v))

G
$x[e]= e′'−→(x) G′[δG′

(ε) ←↩ δG′
(Λ, $$)][(Λ, $$) ↪→ ⊥]

[ASSIGN]

G # e ⇓ v (G1, ε1) = find(G, Λ, $x; λG(v)) G1 # e′ ⇓ v′ (G2, ε2) = find(G1, Λ, $x′; λG1(v′))

G
$x′[e′]=& $x[e]'−→(x) G2[ε2 ↪→ δG2(ε1)]

[ASSIGNREF]

G # e ⇓ v (G′, ε) = find ′(G, Λ, $x; λG(v))

G
unset($x[e])'−→(x) G′[ε ↪→ ⊥]

[UNSET] G # e ⇓ v

G
echo e'−→(x) λG(v), G

[ECHO]
G

s'−→(x) c, G′

〈G, s; s〉 c!=⇒(x) 〈G′, s〉
[SEQ]

Figure 4. Copy-on-assignment PHP(x)

to G[E ↪→ v] for a set of edges E ⊆ EG, so as to simultaneously
redirect all edges ε ∈ E to v. Then the node redirection G[v ←↩ w]
is defined as G[inG(v) ↪→ w].

Slightly more difficult, but a useful graph rewrite is the graph
extension, written G[ε ↪→ϕ G′] where ϕ is a mapping from V G′

to
V G. Here is an example.

Λ !!
!

..###### · · ·ϕ(v) !! ϕ(w) !!

//$$$$
!

. . . !

ˆ
(Λ, !) ↪→ϕ v

00
11 w

˜

=
Λ !!

!

..###### · · ·ϕ(v) !! ϕ(w) !!

//$$$$
!

v
22
33 w

44%%%%% !! !

The idea is to extend G by G′ by first redirecting an edge ε to
G′’s root, and then by redirecting G′’s outgoing edges to G. More
precisely, we look at the counterpart G|

ϕ(V G′
)

of G′, and for

each outgoing edge (ϕ(v), $) ∈ outG(ϕ(V G′
)) from there, we

create a copy (v, $) of this edge and redirect it to G. Note that in
graph extension G[ε ↪→ϕ G′], we always assume that G and G′

are disjoint graphs. Otherwise, we create a fresh copy of G′ and
perform the extension using this copy. Formally, G[ε ↪→ϕ G′] =
(G " G′)[ε ↪→ ΛG′

][(v1, $1) ↪→ δG(ϕ(v1), $1)] · · · [(vk, $k) ↪→
δG(ϕ(vk), $k)] where (ϕ(vi), $i) ∈ outG(ϕ(V G′

)).
We sometimes consider path-preserving ϕ in the definition

G[ε ↪→ϕ G′]. In that case we write G[ε ↪→v G′] where v
corresponds to ϕ(ΛG′

). Here we say ϕ is path preserving if
ϕ(δG′

(w, $)) = δG(ϕ(w), $) wherever ϕ(w) and δG′
(w, $) are

defined. Note that a path-preserving mapping is close to homomor-
phism, but it disregards node labels and graphs roots, and also does
not preserve the number of edges from a node. Such a mapping ϕ,
if exists, is uniquely determined from v(= ϕ(ΛG′

)).
Finally, the graph unraveling is illustrated as follows.

unravel
“

Λ55
!! !

”
=

! !

Λ !!

++&&&&
Λ′ !!

44''''
· · ·

The result of unravel(G) is a possibly infinite graph, whose node
set of unravel(G) has one-to-one correspondence to the set of

paths $ such that Λ
!−−→ v in G. We give the edge function by

δunravel(G)($, $) = $; $ if $ and $; $ are in V unravel(G). Here we
write $; $ for a concatenation. An important property of unravel is
that for any G, H such that G + H , we have H + unravel(H) ,
unravel(G).

2.6 Copy-on-Assignment PHP(x)
The copy-on-assignment operational semantics of PHP(x) is given
in Figure 4. Let us first explain several utility functions used in the
definition.

The function copy(x)(G, v), parameterized by the copying
strategy x ∈ {s, d, g} defines how we copy values at assignment.

Definition 2 (COPY OPERATION).
copy(x)(G, v) = G[(Λ, $$) ↪→ϕ(x) G(x)]

Given a graph G and target node v, this returns a new graph,
in which the copy of a subgraph of G is created and stored in the
temporary variable $$. We define each G(x) as follows.

• G(g) is G|vrcG(v).
• G(d) is unravel(G|vrcG(v)).
• G(s) is G|v

{v}∪{w|G#v
c1−−→w1···

ck−−→wk(=w) s.t. |inG(wi)|=1}
.

The intuition here is as follows: The graphs G(g), G(d), and G(s)

are G’s induced subgraph for the reachable node set from v, the
unraveling of G’s induced subgraph for nodes reachable from v,
and G’s induced subgraph for nodes reachable from v without
passing references, respectively.

We also need to specify a mapping ϕ(x) used in the extension
operator. For x ∈ {d, g}, we define ϕ(x) as a path-preserving
mapping, explained earlier, that maps a node in G(x) to the other
node in G reached by the same path6. For PHP(s), we define this
ϕ(s) similarly except that we leave ϕ(s)(Λ

G(s)) undefined.
The definition of PHP(s) requires an explanation. Let us give

one example. In PHP(s), we should repair the sharing between the
original and copied graphs.

G : Λ

$$
..###

66
!! !v !! !w

77 !! !u

G(s) : !v′ !!
!w′

)) 88

Here we create a copy G(s) of the subgraph of G at v excluding
references. Assume that copied nodes are v′ and w′. According to
the definition of ϕ(s), in this case, ϕ(s)(V

G(s)) = {w}. So, the
edge w −→ u is an outgoing edge from ϕ(V G(s)), and is copied
as an edge w′ −→ u to the shared node u. Now, we similarly
add an edge w′ −→ v. Note that any edge to the root node v′ in

6 We also write G[(Λ, $$) ↪→ϕ(x) G(x)] as G[(Λ, $$) ↪→v G(x)] for
x ∈ {g, d}.

204

G(s) implies that v is shared, so that such an edge to v′ should be
redirected to v. This is why we exclude v from ϕ(s)(V

G(s)).
In other copy semantics, the node set ϕ(x)(V

G(x)) does not
have any outgoing edge, so we never create sharings between the
original and copied graphs.

The first step of the assignment statement $x[e] = e′ is to copy
the value of e′. The second step is called the find step which is to
search inside arrays for the target node corresponding to $x[e]. We
also use find in the reference assignment $x′[e′] =& $x[e] to find the
targets of both $x[e] and $x′[e′]. In PHP, not only missing target
array entries, but also new arrays that are not found on the path to
the target node are created, as shown in the following example.

Λ
$a[0]=& $y"−→

Λ
$a !!

$y

..
!

0 !! null

The assignment statement performs the copy operation earlier than
the find operation. This order is crucial, since the latter rewrites
the graph for creating the path to the target node, e.g., consider
$x[0] = $x. Also during the find operation, PHP raises an error if
nodes other than null and ! already exist where we need arrays.
The following function find(G, v, c) is undefined in such a case.
Note also that the function does not return the target node, but rather
the edge reaching the target node.

Definition 3 (FIND OPERATION). (i)

find(G, v, c) =

8
<

:

undefined If λG(v) /∈ {null, !}
(G, (v, c)) If G # v

c−→ v′

(Ĝ, (v, c)) Otherwise (*)

find(G, v, c; c) =

8
<

:

undefined If λG(v) /∈ {null, !}
find(G, v′, c) If G # v

c−→ v′

find(Ĝ, v̂, c) Otherwise (*)

where v̂ is a fresh node, and Ĝ = (G ∪ {v c−−→ v̂})[v '→ !, v̂ '→
null]. (ii) find ′(G, v, c) is defined similarly, but is undefined for
the cases (*).

Now we can define the semantics of PHP(x) as in Figure 4.
The last rewrite step for $x[e] = e′, called the redirection step,
first redirects all edges to the location $x[e], to the value at the
temporary variable, and then we remove the temporary variable.
The last step for $x′[e′] =& $x[e] is a single edge-redirection,
i.e., we redirect an edge to $x′[e′] to the node at $x[e]. The
small-step semantics c!=⇒(x) is a binary relation over pairs of dy-
namic environment graphs G and sequences of statements s. In
〈G, s; s〉 c!=⇒(x) 〈G′, s〉, each step corresponds to the execution

s'−→(x) of the atomic statement s. The side-effect c is either an
empty sequence, or a singleton sequence of a literal value, corre-
sponding to the output of echo e.

3. Copy-On-Write Model
The copy-on-assignment models of PHP defined in Section 2 give
the semantics or specification of the language. In this section, we
first informally introduce a new graph-rewriting model for the
copy-on-write scheme, corresponding to the implementation. We
then explain that a straightforward copy-on-write model, which co-
incides with the Zend runtime, exposes a discrepancy from the
copy-on-assignment model by inverting the execution of some
statements in a program. Since there is no complete specification
of PHP, this does not imply that the implementation is wrong.
However, this discrepancy is still very unintuitive for users, whose
understanding should be based on copy-on-assignment.

The latter half of this section discusses our refined copy-on-
write scheme, and gives its formal treatment.

3.1 Sharing and Splitting
In copy-on-assignment graphs, sharings are by references through
which we write to the same location from different places. In the
copy-on-write graph, there are two kinds of sharings: one which
corresponds to references, and the other for delaying copies.

In copy-on-write, the assignment $l = $r also creates a sharing:

Λ
$r !! ◦! 0 !! ◦ "a"

$l = $r"−→ Λ !
0 !! ◦ "a"◦

◦

$r
99

$l

::

We use circles ◦within graphs to indicate ports, which are means to
distinguish sharings created by assignment = from those created by
reference assignment =&. Multiple edges to the same port represent
sharing by reference, while multiple edges to the same node, with
distinct ports, represent temporary sharing for a copy-on-write op-
eration. We denote by reference ports those with multiple incoming
edges, and by copying ports those on nodes with multiple ports.

If a write occurs on a path containing copying ports, we split the
graph.

Λ !
0 !! ◦ "a"

! · · ·

◦
◦

◦

$r !!

$l

;;
1

<<(
((

((
((

(
$l[0]= ”b”"−→

Λ
$r !!

$l

==

◦! 0 !! ◦ "a"

! · · ·

◦! 0 !! ◦ "b"

◦
◦

1

99)))))

1
::*****

The split operation above is similar to the copy operation. The
difference is that we do not duplicate the entire subgraph, but only
the path to the node to be written.

3.2 Copy-on-Write Inverts Execution Order
We have to be careful here. The copy-on-write delays copying, and
we are not sure if such a delay never exposes itself, e.g., as an
inversion of the expected execution order.

Unfortunately, it indeed does. We take the third program in
Figure 2 as an example. Let us use the shallow copy semantics,
PHP(s), to interpret this program:

1: $r["hand"] = "trick";
2: $x =& $r["hand"];
3: $l = $r; // <-
4: unset($x); // <-
5: $l["hand"] = "treat";
6: echo $r["hand"]; // "treat" expected

We expect here the same result as the case without unset($x),
since this unset($x) comes after $l = $r which already added
$l[”hand”] to the sharing at $r[”hand”]. However the Zend run-
time gives a different answer – it answers ”trick”, which is the
result expected if unset($x) was executed before $l = $r. In other
words, the execution order was inverted between the copy at Line
3 and the unset at Line 4.

This inversion can be explained by the copy-on-write model,
which we believe is not far from the implementation of the Zend
runtime.

Λ
$r !! ◦! "trick"◦

”hand”
!!

$x

%% $l = $r"−→ Λ ! "trick"◦
◦ ◦

”hand”
!!$r

>>

$l

88

$x

%%

The difference from the copy-on-assignment graph is the reference
counts. Since this time we share the node at $r by $l = $r, the ref-
erence count of the ”trick” node remains as 2, while it was 3 in

205

the copy-on-assignment graph. However this is already problem-
atic, because in the graph after unset($x), the ”trick” node is no
longer considered as shared.
unset($x)"−→ Λ ! "trick"◦

◦ ◦
”hand”

!!$r
99

$l

::

$l[”hand”] = ”treat”"−→ Λ ! "trick"

! "treat"

◦

◦

◦

◦

”hand”
!!

”hand”
!!

$r !!

$l ??

Now the delayed copy is resumed at $l[”hand”] = ”treat”, copy-
ing the port on the ”trick” node before the write, and giving the
same result for echo as the Zend runtime.

Note that what we see here is not a problem inherent to shallow
copy. Other copy semantics also have similar, and rather obvious,
inversion problems. For example, consider the following program:

1: $r["hand"] = "trick";
2: $x =& $r["hand"];
3: $l = $r; // <-
4: $x = "treat"; // <-
5: echo $l["hand"]; // "trick" expected

When a value is copied deeply (or graphically), references inside
it are also copied rather than skipped, so that we expect that the
write to $x at Line 4 is only visible from $r[”hand”]. However in
the copy-on-write model, we are in the following state before this
write.

Λ ! "trick"◦
◦ ◦

”hand”
!!$r

99

$l

::

$x

%%

Here it is difficult for $x = ”treat” to modify only $r[”hand”]
but not $l[”hand”]. If we modified both, we see the inversion of
the execution of Line 3 and Line 4.

3.3 Mostly Copy-on-Write Scheme
We propose a novel solution for the inversion problem. The key
idea is to force a split at the assignment, if the value at the right
hand side is dirty, i.e., containing references. We assume that PHP
programs do not create dirty arrays very often, so that the cost
of additional copies is not significant. We can still safely delay
copying in other common cases. We call our solution mostly copy-
on-write.

Let us look into the problem again. It seemed that we went
wrong with states such as this:

Λ !1 !2◦
◦ ◦!!
99
::

##

We think that the above state is already too late. At this state,
nothing prevents us from, without splitting the node 1, modifying
the node 2, either by an unset reducing the reference counts, or by
a write updating the content of the node. The root of the inversion
problem comes from this unset or write, which should have taken
place after we split the node 1. It is also difficult to force such a
split at the time of the unset or write, which requires the reverse
traversal of the graph to find the targets of splits, adding additional
complexity and significant costs to the implementation.

Instead, our scheme forces a split one step before the too late
state, i.e., when we try to share the node 1. In fact, we do not allow
such a sharing. This node 1 is called dirty, which we indicate with

a marker •.

Λ ! !• ◦!!$r !! %% $l = $r"−→ Λ ! !

!

•

•

◦!!@@++++

$r !!
$l

..##
##

%% or Λ ! !

!

•

◦

◦
◦
!!
33,,,,

$r !!
$l

..##
##

%%

This time the statement $l = $r forces a split of the graph by copy-
ing the array node. This results in the left side graph in PHP(s)7,
and the right side graph in PHP(g). PHP(d) also creates the right
side graph with a minor change explained later. Confirm that the
subsequent unset or write on the result graphs then will not cause
inversion problems.

Then, when should a node be called dirty? A simplistic answer
is “if it represents a value containing references”. However this
definition can be refined by carefully examining when an update
of a reference is seen from the other nodes. We say a graph is
well-colored if it correctly marks ports on dirty nodes. Here are
examples of well-colored graphs according to our definition.

(A)
Λ !0 !1 !• • ◦r!! AAAABB !!

(B)

!

Λ !1 !

!0

◦

◦

◦
◦ ◦r

@@++++

..--
-

99)))
)

88...

AA
BB

In graph (A), either unset of an upper edge to port ◦r , or a write
through it has an effect, which can be seen from either node 0 or
1, and thus nodes 0 and 1 are dirty. On the other hand, the well-
coloredness of graph (B) says that node 0 is clean. This is because
any update through the upper path to the reference port ◦r first
triggers the split of this path, which blinds the effect of the update
from node 0. For example, even if we try to unset one of the edges
to ◦r in PHP(s), the reference count of ◦r does not drop to 1, since
the split at node 1 raises the reference count of ◦r to 4 before its
drop. Likewise, in PHP(d) or PHP(g), we cannot see from node 0
any write to the node at ◦r through the upper path, since the split at
node 1 duplicates port ◦r before the write.

Let us also look at the following graph (C).

(C)

!

Λ !

!0

•

◦

◦

88////

//000 CC DD>>
111

1

The graph (C) is not safe in PHP(g) and PHP(d), but is safe in
PHP(s), e.g., unset of an upper edge does not turn a reference to
non-reference, so that the effect of unset is not visible from node 0.
In this paper, we define the well-coloredness for PHP(s) differently
from that for other copy semantics. We first explain PHP(g) and
PHP(d), and then will later repeat the discussion for PHP(s). In
what follows, we say well-colored to denote the graph coloring
property for PHP(g) and PHP(d), and use shallowly well-colored
to denote the property for PHP(s).

The copy-on-write graphs consist of nodes and ports. Let us use
p, q, r, . . . to range over ports, v, w, . . . to range over nodes, and
n, m, . . . to range over both ports and nodes. For example, each
port p which itself is a successor of a certain node v, always has a
single node successor w. We say a node v dominates n if all paths
from Λ to n pass this v, and in particular, v strictly dominates n if
v dominates n and v 3= n. We denote by a dominance frontier of v
a set of m such that i) m is not strictly dominated by v, and ii) m
is a successor of a certain port or node n dominated by v.

7 So in the mostly copy-on-write model of PHP(s), we keep the color of the
entry port of the copied subgraph, while such port becomes clean in other
copy semantics. This is because some references may be still shared by the
original and copied values in PHP(s).

206

Definition 4. 1) We say a non-port node v is dirty iff its dominance
frontier include ports.
2) A graph G is well-colored iff i) the ports on dirty nodes are
marked dirty, and ii) the copying ports are marked clean.

In graph (A), node 0’s dominance frontier is {◦r}, while in
graph (B), it only contains node 1. Hence node 0 is dirty in graph
(A) but not in graph (B). Note that the well-coloredness does not
require the minimality of marking, e.g., we can mark the port on
node 0 in graph (B) dirty, since it is not a copying port.

3.4 Maintaining the Well-Coloredness
Before giving formal models of mostly copy-on-write, we discuss
the coloring process required to maintain well-coloredness. The
key idea of mostly copy-on-write was to force splits of the graph
one step before the too late states. That means the coloring process
should take place two steps before such states, i.e., at the reference
assignment $x =& $r[”hand”].

Λ
$r !! ◦! "trick"◦

0
!!

$x =& $r[0]"−→ Λ
$r !! ◦∗! "trick"◦

0
!!

$x

%%

We call the port ◦∗ a false-negative, which should be marked dirty
after the reference assignment. For PHP(g) and PHP(d), the only
chances for introducing false negatives are at =&, while this is not
the case in PHP(s). Fortunately, we have linear time algorithms to
identify false negatives in either case. Here, we give an algorithm
for PHP(g) and PHP(d) that finds false negatives after the execution
of =&.
Algorithm 1 (MARKING FALSE-NEGATIVES AT =&). In the
mostly copy-on-write models given later, rewrites for $x′[e′] =&
$x[e] consist of first finding two paths, as illustrated below, reach-
ing the ports to be shared as a reference, and then redirecting the
edge drawn as !!!"!" to port p. Assume that during the find steps,
we split the paths to the ports to be shared, i.e., none of p1, .., pk−1

and q1, .., qh−1 are copying ports.8

Λ
$x !!

$x′ !!

◦p1! !!222 ◦pI=qJ ! !!222

!!

!
0

3 2

•pk−1! !! ◦p!

◦q1!

!!

4
&

5 2

•qh−1! !!!"!"!" ◦q

The coloring algorithm then proceeds as follows. We identify the
largest I and J such that pI appearing in q1, .., qh−1 and qJ

appearing in p1, .., pk−1. This process is done in O(k + h)-time.
Let I = J = 0 if there are no such pI and qJ . Then we mark all pi

and qj such that i ∈ I + 1, .., k − 1 and j ∈ J + 1, .., h− 1.

The correctness of this algorithm follows from the following
remark.

Remark 1. If the graph is well-colored, the above redirection
introduces a false negative port r only when either r = pi such that
i ∈ I + 1, .., k − 1, or r = qj such that j ∈ J + 1, .., h− 1. This
is proved as follows. Assume that r is on node v. If the redirection
is about to turn v dirty, either p or q is reachable from v. If q is
reachable, q is dominated by v, since v is clean before the rewrite.
So, v appears on any path from Λ to q, and thus r = qj for some
j ∈ 1, .., h− 1. The other case is the same. Furthermore, we have
r 3= pi for i ∈ 1, .., I and r 3= qj for j ∈ 1, .., J . Otherwise, v
dominated both p and q, in which case p is still dominated by v
after the rewrite.
8 The figure might indicate that all ports pi (i ∈ 1, . . . , I − 1) and qj
(j ∈ 1, . . . , J−1) are dirty according to the definition of well-coloredness.
However, this is not the case if some of them overlap, e.g., p1 = q1. Also
we later introduce shallowly well-colored graphs, in which some of pi and
qj can be non-dirty even if there is no overlap.

While it is enough to remove false-negatives to guarantee safety,
we can also consider the reverse problem, i.e., unmarking false pos-
itives. By reducing false positives, we can reduce the chance of
unnecessary copies during assignments. Unfortunately, this reverse
problem is difficult. For example, rewrites like unset($x) intro-
duce false-positives on ports not visited during the rewrite.

Λ !!

$x

>>*
5 6 2 7 8

)
•! !! •! !! ◦!

In general, the removal of all false-positives seems to require the
traversal of the entire graph. However we may still remove some
false-positives by using several techniques. For example, when
copying an array, it may be possible to traverse all its elements. If
none of the elements inside the array is dirty or a reference, then the
array is clean. Alternatively, we can use the the algorithm by Cytron
et al. (Cytron et al. 1991), also known as the minimal SSA algo-
rithm, which computes dominance frontiers in super-linear time to
the size of the graph. The cost is high but the algorithm can guar-
antee the minimality of markings. For example, we may run this
algorithm periodically according to the estimated numbers of false
positives.

To summarize, compared to the original copy-on-write scheme,
the overhead added by the mostly copy-on-write scheme comes
from

• Additional splits at assignment $x[e] = e when e evaluates to a
dirty array.

• Linear-time maintenance of the well-coloredness invariant after
each execution of statement, in particular at $x[e] =& $x[e] in
PHP(d) and PHP(g).

The latter overhead is linear with the depth of the nested array
accesses. We think this overhead is small.

3.5 Mostly Copy-on-Write PHP(g)
A copy-on-write graph is a tuple G = (P G "W G, λG, δG) whose
node set is partitioned into a set of ports P G, and the set of non-
port nodes W G. λG is a node labeling that maps v ∈ W G to
Const " {!}, and port p ∈ P G to {◦, •, 4}. Note that 4 is used in
PHP(d). The edge function δG maps W G× (Var "Const) to P G,
and P G × {–} to W G. We write G # v

c−→ pv′ for an edge from
v to v′ going through port p.

We construct mostly-copy-on-write models for all three PHP(x).
We start with PHP(g). The other copying semantics will be covered
next as variations.

In copy-on-write schemes, the split operation is a basic oper-
ation used in several places. In case of the mostly copy-on-write
scheme, a single split may duplicate a certain subgraph, not just a
single node as with the original copy-on-write scheme. We cannot
place multiple ports on dirty nodes, which would break our invari-
ant. Hence a single split step forces, rather than delays, splits of all
dirty nodes reachable from a given port. The rewrite split(g)(G, p)
is defined on copy-on-write graphs G and port p.

split(g)(G, p) = G[(p,−) ↪→ G|δ
G(p,−)

Ṽ
]

If the subscript of ↪→v is omitted, it means v = δG(p,−). Here Ṽ
is the minimal set satisfying

• δG(p,−) ∈ Ṽ ,
• δG(w, c) ∈ Ṽ if w ∈ Ṽ , and
• δG(p′,−) ∈ Ṽ if p′ ∈ Ṽ such that p′ is marked dirty.

207

G # Λ
c−→ pv

G # c ⇓ v
[CONST]

G # Λ
$x−→ pv

G # $x ⇓ v
[VAR]

G # e ⇓ v G # e′ ⇓ v′ G # v
λG(v′)−→ pv′′

G # e[e′] ⇓ v′′
[LOOKUP]

G # e ⇓ v G # e′ ⇓ v′ (G′, ε) = find2 (x)(share(x)(G, v′), Λ, $x; λG(v))

G′′ ≈ G′[δG′
(ε) ←↩ δG′

(Λ, $$)][(Λ, $$) ↪→ ⊥] G′′ is (x)-well-colored

G
$x[e]= e′'−→(x) G′′

[ASSIGN]

G # e ⇓ v (G1, ε1) = find2 (x)(G, Λ, $x; λG(v)) G1 # e′ ⇓ v′ (G2, ε2) = find2 (x)(G1, Λ, $x′; λG1(v′))
G′′ ≈ G2[ε2 ↪→ δG2(ε1)] G′′ is (x)-well-colored

G
$x′[e′]=& $x[e]'−→(x) G′′

[ASSIGNREF]

G # e ⇓ v (G′, ε) = find2 ′(x)(G, Λ, $x; λG(v)) G′′ ≈ G′[ε ↪→ ⊥] G′′ is (x)-well-colored

G
unset($x[e])'−→(x) G′′

[UNSET]

G # e ⇓ v G′′ ≈ G G′′ is (x)-well-colored

G
echo e'−→(x) λG(v), G′′

[ECHO]
G

s'−→(x) c, G′

〈G, s; s〉 c!=⇒(x) 〈G′, s〉
[SEQ]

Figure 5. Mostly copy-on-write PHP(x)

The set Ṽ includes all nodes reachable from δG(p,−) with-
out going through ◦-ports. For example, consider the follow-
ing graph. When we split this graph at port ◦0, we have Ṽ =
{!1, •2, !3, ◦4}. Then the induced subgraph of Ṽ is copied and
extends the graph at port ◦0, giving the following result.

split(g)

0

@
Λ !1 !! •2!3 !◦◦0 ◦4

$r
66

$l 44 !! %%
, ◦0

1

A = Λ
$r!!
$l
==

◦!1 !! •2!3 !

◦! !! •!

◦4
◦
%%!!
EE &&

Let us discuss the assignment statement G
$x[e]= e′−→(g) G′ in the

mostly copy-on-write model. The definition is given as the rule
ASSIGN in Figure 5. The split operation is used here in two places;
(1) at sharing, when the target is dirty and not sharable, and (2) in
the process of finding the target node of the write.
• The first step in the copy-on-assignment was the copying of the

assigned value. However this time, this occurs only when v′

such that G # e′ ⇓ v′ is under a dirty port, in which case we
split the graph. Otherwise we place a fresh clean copying port
on v′. In either case, the root port of the copied value is put in
the temporary variable $$. The graph after this step is given by
share(g)(G, v′).

• Similarly to the copy-on-assignment model, we find the follow-
ing path.

Λ
$x−→ p1v1

c1−→ p2v2 · · · vn
cn−→ pn+1(= p)

where e evaluates to a sequence of constants c1 · · · cn. In this
step, defined by (G′, (vn, cn)) = find2 (g)(share(g)(G, v),
Λ, $x; c1; ..; cn), any time we encounter a node with multiple
ports, we split the graph.

• The last redirection step is the same. We switch the incoming
edges directed to p to the port at the temporary variable $$.

The formal definitions of share(x) and find2 (x) are given in Fig-
ure 6.

Rewrites for other statements are given similarly. Note that
the rule for each statement in Figure 5 contains non-deterministic
coloring processes. By saying G is (x)-well-colored, we denote
that G is well-colored if x ∈ {d, g}, and that G is shallowly well-

colored, which we define later, if x = s. We write G′′ ≈ G′ if
two graphs are isomorphic by ignoring the differences between •-
ports and ◦-ports. The definition in Figure 5 does not mention any
fixed algorithm, e.g., Algorithm 1, for choosing well-colored G′′

as the result of s'−→(x). Rather, the definition is non-deterministic
and chooses arbitrary such G′′. The execution should not stop at
the coloring process, which is guaranteed by the following lemma.

Lemma 1 (PROGRESS IN COLORING). If G is (x)-well-colored,
the rewrite G

s'−→(x) G′ never fails in its coloring process.

3.6 Other Copy Semantics
We move to mostly copy-on-write models for other two semantics,
PHP(d) and PHP(s), by giving minor changes to the model of
PHP(g).

Recall that the deep copy semantics distinguishes the copied
value at $l from the original $r, at $l = $r. The copied value is
treated as a pure value without any references inside. We indicate
this pureness by introducing 4-port. For example,

Λ ! 1◦
(◦

$r
>>

$l 88
”bar” !!

”foo”

FF $l[”foo”]= 2−→ Λ ! 1

! 2

◦ ◦
(

◦ ◦

$r !!

$l !!

”foo”

GG”bar” !!
”bar”

119999999
”foo”

!!

This rewrite is again implemented by split(d)(G, p) operation.
Here one idea to define split(d)(G, p) is to use an unraveling of
the subgraph G|v

Ṽ
in the definition of split(g)(G, p). However the

problem of this idea, with a graph below for example, is that unrav-
eling of a copied subgraph for {!1, •2, !3, ◦4} results in an infinite
tree. If we consider a copy-on-write model as an implementation
model, such an infinite unraveling is not desirable. Instead, in our
scheme, we delay such an unraveling:

split(d)

0

B@
!1 !3 !◦

(0 •2 ◦4
66
::

!! HH !!
, (0

1

CA= !1 !3 !

! !

◦

◦0

•2 ◦4

◦◦
∗

(
!!

99

!! HH !!

!!
GG

II::::

208

Definition 5 (FIND2 AND SHARE OPERATION). 1) Function
find2 (x)(G, v, c) is defined as follows.

find2 (x)(G, v, c) =8
<

:

undefined If λG(v) /∈ {null, !}
(G, (v, c)) If G # v

c−→ pv′

(Ĝ, (v, c)) Otherwise (*)
find2 (x)(G, v, c; c) =8

>>>>>>><

>>>>>>>:

undefined If λG(v) /∈ {null, !}
find2 (x)(G, v′, c)

If G # v
c−→ pv′, λG(p) 3= 4 and |inG(v′)| = 1

find2 (x)(G
′, δG′

(p, –), c)

If G # v
c−→ pv′ and G′ = split(x)(G, p)

find2 (x)(Ĝ, v̂, c) Otherwise (*)

where Ĝ = (V G " {p̂, v̂ | p̂, v̂ are fresh}, ΛG, λG[p̂ '→ ◦, v̂
'→ null, v '→ !], δG[(v, c) '→ p̂, (p̂,−) '→ v̂]).

2) find2 ′(x)(G, v, c) is defined similarly except that it is undefined
for the cases (*).

3) We define share(x)(G, v) as follows.

share(x)(G, v) =

(
G ∪ {Λ $$−−→ p̂v} If v has ◦- or 4-port

split(x)(G ∪ {Λ $$−−→ p̂v}, p̂) If v has •-port

where p̂ is a fresh ◦-port if x = g, and is 4-port if x = d. In case
of x = s, it is ◦-port or •-port depending on the color of v’s ports.

Figure 6. Definition of find2 (x) and share(x)

To delay unraveling, we supply sufficient ports, e.g., the port ◦∗
above, corresponding to each edge in the copied graph. We define
split(d)(G, p) as follows.

split(d)(G, p) =


split(g)(G, p) if λG(p) 3= 4
(G[(p,−) ↪→ G̃])[p '→ ◦] otherwise

Let Ṽ be the set appearing in the definition of split(g)(G, p), from
which the above G̃ is defined as follows.

• The node set V G̃ contains all non-port nodes in Ṽ and a set of
ports pε each having one-to-one correspondence to an edge ε in
G|

Ṽ
.

• For each p(v,c) ∈ V G̃ and v′ = δG(v, c;−), we have an edge
v

c−−→ p(v,c)v′.
• Each port p(v,c) is 4-port if δG(v, c;−) /∈ Ṽ , and is ◦-port

otherwise.

Let us move to the shallow copy semantics PHP(s). In this
case, split(s) does not duplicate ports containing multiple incoming
edges.

split(s)(Λ !1 !◦
◦0 ◦2
>>
11

>>
88 , ◦0) =

!1

!
Λ !

◦

◦0
◦2

CC

EE
>>'' ""::

This is explained from the set Ṽ for defining split(s) which is
this time {!1}, and does not include ◦2. Here is a definition of
split(s)(G, p).

split(s)(G, p) = G[(p,−) ↪→ G|δ
G(p,−)

Ṽ
]

Here Ṽ is the minimal set satisfying

• δG(p,−) ∈ Ṽ ,

• δG(w, c) ∈ Ṽ if w ∈ Ṽ where |inG(δG(w, c))| = 1, and
• δG(p′,−) ∈ Ṽ if p′ ∈ Ṽ such that p′ is marked dirty.

The remainder of the mostly copy-on-write semantics of both
PHP(d) and PHP(s) are the same as PHP(g), except that we need a
different well-coloredness invariant in PHP(s) case.

3.7 Shallow Well-Coloredness
The original well-coloredness invariant does not fit well for PHP(s).
This is due to the difficulty to guarantee the progress property at
coloring, i.e., Lemma 1. For instance, some rewrites can break the
well-coloredness in a manner that it cannot easily be fixed.

Λ ! !◦
◦ ◦

$a JJ

$b

KK
0

00
1

11 $b[2]= 0"−→

!

Λ !

! !

◦

◦
◦
◦

((;;;

99<<<
LL MMNNOO

!!

unset($a[1])"−→
!

Λ !

! !

•

◦
◦
◦

((;;;

99<<<
LL MM66

===

!!

The above graph after the split caused by $b[2] = 0 is not well-
colored in the original sense. It is nor easy to turn this graph well-
colored, since it requires marking of the port at $a. As an alternative
solution, we may accept this graph by using a different invariant in
the case of PHP(s). We call the graph after $b[2] = 0 shallowly
well-colored. By carefully examining this case, we can observe that
actual problems do not occur immediately, but rather they occur
several steps later, e.g., after we unset $a[1], share the node at $a,
and then we unset $b. During these steps, we have a second chance
to mark the port at $a, e.g., at unset($a[1]).

We have devised a new definition of the shallow well-coloredness
as follows. We write cl(v) to denote a set of nodes reachable from
v without going through reference ports. We denote by p’s refer-
ence count from V , a number of edges (v, c) ∈ inG(p) such that
v ∈ V .

Definition 6. 1) We call a node v shallowly dirty iff there is a
reference port p such that p’s reference count from cl(v) is equal
to 1.
2) A graph is shallowly well-colored if i) ports on shallowly dirty
nodes are marked dirty, and ii) copying ports are marked clean.

Let us discuss the progress property in PHP(s). In PHP(g) and
PHP(d), at least for identifying false negatives for the safety, we
need the coloring process only after the reference assignment
$x′[e′] =& $x[e]. On the other hand, PHP(s) is not so simple, in
which any statements rewriting the graph may introduce false neg-
atives that should be immediately fixed after rewrites. We can clas-
sify the sources of false negatives in PHP(s) into the following three
categories.

• The first source comes from rewrites like unset as shown in the
following example. Such false negatives may also result from =
and =&, if the rewrites erase existing edges in the graph.

!

Λ ! !◦

◦
◦

◦
$a

!!

88........ 0

-->>>>
!! PP00

unset($a[0])"−→
!

Λ ! !•

◦

◦
$a

!!

::9999999 !! PP00

• The second source is the rewrite by $x[e] = e′. Note that the
definition of share for PHP(s) says that the port at $$ becomes
dirty if the port at rvalue e′ is dirty. If so, some ports on the path
to $x[e] may become false negative.

Λ ! !• ◦!!$a !! %% $b[0]= $a"−→ Λ ! !

! !

•

•

◦

•

!!$a !!

$b <<(
((

0 !!

II????

%%

209

• The third source of false negatives comes at reference assign-
ment. The coloring algorithm here is similar to that for PHP(g)
and PHP(d), but actually it is more conservative. Look at the
following example.

Λ ! ! !◦ • ◦
$a

!! ;;1 !! !! $a[2]=& $a[1]"−→ Λ ! ! !• • ◦
$a

!! ;;1 !! !!

2

<<

Note that the new coloring invariant for PHP(s) itself is neither
weaker nor stronger than the original invariant. For example, the
port at $a in the third example should be marked only in PHP(s).

For PHP(s), the following algorithm is at least sufficient for
fixing the graph after the rewrites.

Algorithm 2 (MARKING FALSE-NEGATIVES IN PHP(S)). 1)
The rewrite at UNSET in Figure 5 removes an existing edge ε.
In PHP(s), if there is a reference port reached from ε, we mark all
ports encountered during the “find” step before the rewrite.
2) The “redirection” step at ASSIGN replaces the content at the
target port with the content of $$. If either i) the target port of
the redirection is non-reference, but from which we reach a certain
reference port, or ii) the port at $$ is dirty, we mark any port en-
countered during the “find” step dirty.
3) Similarly to Algorithm 1, at ASSIGNREF, we mark ports found
during the “find” steps. The difference is that we cannot skip
ports p1, . . . , pI and q1, . . . , qJ , if either i) there is a reference
port reachable from the node under q(= qh), ii) a reference
port is reached from the node under p(= pk), or iii) one of
pI+1, . . . , pk−1 and qJ+1, . . . , qh−1 is a reference port.

Remark 2. Let us discuss the correctness of Algorithm 2. We say
a path is split if it does not go through copying ports.

Case 1). Assume that a node v is about to turn shallowly dirty
after the removal of ε, which would drop the reference count of a
certain p from cl(v). This means that there is a path from v to p,
which goes through ε but not any reference port. Now note that the
“find” step in UNSET guarantees the existence of a split path from
the root to ε, which implies that any node which can reach ε without
passing reference ports dominates ε. Hence v dominates ε, so that
v is on the path found in the “find” step.

A similar discussion applies to cases 2.i) and 3.i). The case
2.ii) is similar to Remark 1. Cases 3.ii) and 3.iii) come from the
fact that a reference introduced by the reference assignment may
remove some nodes from cl(v).

Combining Remark 1 and 2, we obtain the first half of the proof
of Lemma 1. Note that in any semantics PHP(x), the last redirection
steps of the rewrites introduce false negatives only on non-copying
ports, so that we can safely fix the graph by marking such ports
dirty. The detail is omitted, but we can complete the proof of our
progress lemma by showing that other rewrite steps, i.e., sharing
and splitting steps, never break well-coloredness or shallow well-
coloredness.

4. Correctness of Mostly Copy-On-Write Scheme
The mostly-copy-on-write scheme is correct with respect to the
copy-on-assignment semantics. In this section, we use a bisimu-
lation to show this result.

4.1 Equivalence by Bisimulation
If two systems are bisimilar, we cannot distinguish between the
two from their behaviors, which in our case, are observed from
the output of echo statements. Let Ĝ0 and G0 be initial copy-on-
assignment and copy-on-write graphs, including only constants but
no variables.

Theorem 1 (EQUIVALENCE OF COPY-ON-ASSIGNMENT AND
MOSTLY COPY-ON-WRITE). Let s be a PHP program. Two states
〈Ĝ0, s〉 and 〈G0, s〉, in the copy-on-assignment and mostly copy-
on-write semantics c!=⇒(x), respectively, are bisimilar to each other.

4.2 Domain-Theoretic Approach
Intuitively speaking, the bisimilarity relation should be obtained by
sufficiently splitting the given copy-on-write graph, which should
give the canonical form that has the same shape as the copy-on-
assignment graph. However formalizing this intuition requires care.
For example, for the following graph, we may split the upper cycle
forever without ever reaching the desired canonical form.

!

!

(
◦

(
◦
BB@@@

QQ

!!
RR

"(d)
! !

!

(
◦◦

(
◦
BB@@@

!!
QQ

!!
RR

"(d) · · ·

To formally define the canonical form, we use a domain-theoretic
approach, in which the sufficient splitting means to take the lub of
arbitrary possible results of splitting.

We say a graph G is regular if G′ + G for some finite graph
G′. We use G to denote the set of all regular graphs, for which the
following result is known.

Theorem 2 (REGULAR GRAPHS FORM CPO). (Barendsen and
Smetsers 1992) (G,+) is an unpointed-cpo.

In other words, any directed subset D ⊆ G of regular graphs
has a lub

F
D in (G,+).

In the following, we mean by copying ports either ports on
nodes with multiple ports or 4-ports. We say a path in the copy-
on-write graph is split if it does not go through copying ports. A
port or node n, or an edge ε, is split if there is a split path from Λ to
n, or ε. Now we define the binary relation "(x) of copy-on-write
graphs as follows.

Definition 7 (DEFINITION OF "(x)). 1) A set of (x)-well-colored
graphs is denoted by W(x). 2) A set of weakly well-colored graphs,
denoted by W0

(x), is the set of copy-on-write graphs such that
dirty (or shallowly dirty if x = s) nodes have neither non-split
clean ports nor copying ports. 3) Let G, G′ ∈ W0

(x), we write
G "(x) G′, if there is a copying port p ∈ V G such that i) p is
split, and ii) G′ = split(x)(G, p).

Proposition 1 (PROPERTY OF "(x)). We write erase(G) for a
graph obtained by erasing all ports in G. (i) G "(x) G′ implies
erase(G) + erase(G′). (ii) "(x) is confluent.

With "(x), the canonical form of the copy-on-write graph,
cano(x)(G), is defined as follows.

cano(x)(G) =
G

G!∗
(x)G′

erase(G′)

The bisimulation relation for Theorem 1 relates a copy-on-write
graph G and copy-on-assignment graph Ĝ iff i) G ∈ W(x), and ii)
cano(x)(G) , Ĝ.

Proposition 2. (CONTINUITY OF REDIRECTION) Let D be a
directed set on (G,+). Let C be a set of paths and c be a path
such that for each Ĝ ∈ D, i) EĜ = {(δĜ(Λ, c′), c′′) | c′; c′′ ∈ C}
is a set of edges to a single node, and ii) vĜ = δĜ(Λ, c) ∈ V Ĝ.

G

Ĝ∈D

Ĝ[EĜ ↪→ vĜ]) (
G

D)[E
F

D ↪→ v
F

D].

210

Lemma 2. (REDIRECTION AND SPLIT COMMUTE) Let G ∈
W0

(x). Let p, q, r be ports, and ε (= (v, $)) be an edge such that
p, q, r, and v are split. We also assume that r is a copying port.

split(x)(G, r)[ε ↪→ ⊥] , split(x)(G[ε ↪→ ⊥], r)
split(x)(G, r)[ε ↪→ p] , split(x)(G[ε ↪→ p], r)
split(x)(G, r)[q ←↩ p] , split(x)(G[q ←↩ p], r)

Now by combining the results obtained so far, we can show
the following lemma, which states that each rewrite step be-
tween two models preserves the bisimulation relation. In particular,
Lemma 3(ii) is a direct consequence of Proposition 2 and Lemma 2.

Notation 1. 1) For n ∈ V G, we write [n]G for a set of paths
to reach n, i.e., [n]G = {c | G # Λ

c−−→ n}. 2) Given a
path c on copy-on-write graphs G, a path c& on cano(x)(G) is
obtained by removing all occurrences of – from c. 3) Given a
split node n ∈ G, we write n& ∈ V cano(x)(G) for a node such
that [n]&G = [n&]cano(x)(G), and ε& for an edge (v&, c) such that
ε = (v, c).

Lemma 3. (EACH STEP PRESERVES BISIMULATION) Let G be a
copy-on-write graph in W0

(x).
(i) Let Ĝ , cano(x)(G) and v ∈ V G be a split node. 1) (G′,
(w, c)) = find2 (x)(G, v, c) is defined iff (Ĝ′, (ŵ, ĉ)) = find(Ĝ,

v&, c) is defined. If both are defined, 2) Ĝ′ , cano(x)(G
′), 3)

[ŵ]Ĝ′ = [w]&G′ and ĉ = c, and 4) w is split in G′.
(ii) cano(x)(G[ε ↪→ p]) , cano(x)(G)[ε& ↪→ p&], if ε and p are
split. Similarly, for [ε ↪→ ⊥] and [q ← p] where ε, p and q are split.
(iii) cano(x)(share(x)(G, v)) , copy(x)(cano(x)(G), v̂), if G ∈
W(x) and [v̂]cano(x)(G) ⊆ [v]G.
(iv) cano(x)(G) , cano(x)(G

′) if G ≈ G′ and G′ ∈ W0
(x).

Now Theorem 1 is a straightforward consequence of Lemma 1
and Lemma 3.

5. Experimental Implementation
We implemented the mostly copy-on-write scheme on top of the
PHP Runtime, called P9, which is a native compiler-based runtime
currently developed in IBM Tokyo Research Lab. In the actual
implementation, we need some extensions to the model defined in
Section 3.

• Our graph model has a single root, which represents a univer-
sal variable table. In reality, PHP has multiple variable tables for
global variables, local variables, and so on. Moreover, P9 some-
times performs an optimization to decompose a variable table
to separate variables on local frame. In such a case, each single
variable becomes a root of the graph. Similarly, PHP also has
objects which are assigned by pointers9, rather than by copying.
Each object also corresponds to a root of the graph whose suc-
cessors are field members. In the implementation we extended
our scheme to deal with such multi-rooted graphs.

• We have not discussed so far language constructs other than
=& in PHP for creating references. For example, PHP supports
pass-by-reference and return-by-reference mechanisms at func-
tion calls. Such mechanisms can be implemented by adaptation
of =&. PHP also has an array initializer, i.e., array expression,
which can directly create an array value containing references.
In our implementation, arrays created by array expression sim-
ply inherit the dirtiness information of their elements.

9 P9 is an implementation of PHP5. Historically, PHP4 objects are treated
by values, and this has changed during the move to PHP5.

array array-ref specweb
PHP(g) coa 62.8 95.2 1624.2

PHP(g) m-cow 38.3 95.0 1482.7
PHP(d) m-cow 38.5 95.0 1479.6

näive cow 38.5 39.3 1431.2

Table 1. Benchmark results (elapsed time µsec)

• Recall the explanation of find2 (x)() during which we split any
node encountered if it has multiple ports. We use approximate
reference counting to implement this function. It is easy to see
that for PHP(d) and PHP(g), we can perform splits according
to such over-approximated reference counts. On the other hand,
we do not currently have a faithful implementation of PHP(s).
This is because as argued earlier in Section 2, such an imple-
mentation requires the exact reference counting.

Table 1 summarizes the preliminary benchmark results of our im-
plementation. In addition to mostly-copy-on-write implementa-
tions of PHP(d) and PHP(g), we also prepared copy-on-assignment
PHP(g), and a naı̈ve copy-on-write of the shallow copy close to
the Zend runtime. In Table 1, the results of first two columns use
microbenchmark scripts, which repeat array assignments for clean
and dirty arrays, respectively. The third one is a script taken from
the SPECweb2005 benchmark10 whose result is measured using
an actual web-server configuration. The behaviors of all scripts are
not affected by the difference in copy semantics. The measure-
ments were made on Windows XP, Intel Core2 2.0GHz for array
and array-ref, and Linux Pentium (R) 3.4 GHz for specweb.

The use of copy-on-assignment degrades the performance by
13.5 % on specweb. In contrast, the mostly copy-on-write imple-
mentations reduce the performance degrade for specweb to around
3%, while guaranteeing the equivalence to the copy-on-assignment
semantics.

6. Related Work
PHP arrays are close to functional arrays, whose optimization is
a recurring problem in the study of functional languages. Indeed,
copy-on-write techniques for functional arrays were already pro-
posed for IFP (Robison 1987) and SETL (Schwartz 1975) in early
days. More recently, after the dynamic reference counting becomes
less popular as a memory management scheme, optimization tech-
niques using the static approximation of reference counts are pro-
posed (Hudak and Bloss 1985; Bloss 1989; Odersky 1991; Wadler
1990; Turner et al. 1995; Hofmann 2000; Shankar 2001). Such
work tries to determine when we can perform in-place update on
functional data structures. Regarding efficient runtime techniques
for functional arrays, alternatives to copy-on-write arrays, called
version tree arrays or trailer, are proposed (Baker 1978; Aasa et al.
1988; O’Neill and Burton 1997; Conchon and Filliâtre 2007).

Term graph rewriting systems (TGRS) (Barendregt et al. 1987)
extend the term rewriting system to graph rewriting. Our graph
rewriting semantics and proofs are largely inspired by the work on
TGRS. Barendsen and Smetsers (Barendsen and Smetsers 1992)
discussed the lazy copying in this setting, whose idea is close to
copy-on-write.

Speaking in a broader context, formal semantics approaches
have been identifying and solving intricate problems in real-life
programming languages, e.g., co-/contra-variance problems in Eif-
fel, C++, Java, and other object oriented languages (Castagna 1995;
Igarashi and Viroli 2002), or dynamic loading problems in Java

10 http://www.spec.org/web2005/. We used bank/transfer.php.

211

(Qian et al. 2000), etc. Our work can be considered as one on this
line of researches.

7. Conclusion
We have discussed the semantics of PHP focusing on the copy
semantics for arrays. We have also presented the efficient mostly
copy-on-write implementation faithful to the semantics. Our future
work directions include:
• Exploring the implementation of PHP without costly reference

counting. For this, we may combine our mostly copy-on-write
technique with existing work on functional arrays and in-place
update problems.

• Developing compiler optimization techniques for PHP’s arrays
and references, including deforestation, escape analysis, etc.,
based on the semantics defined in this paper.

8. Acknowledgment
We would like to thank Rob Nicholson for early discussions on
PHP arrays’ problems. Minamide’s work was partly supported by
Grant-in-Aid for Scientific Research 20300001 and 18700018, and
CREST of JST (Japan Science and Technology Agency).

References
A. Aasa, Sören Holmström, and Christina Nilsson. An efficiency compar-

ison of some representations of purely functional arrays. BIT, 28(3):
490–503, 1988.

Henry G. Baker. Shallow binding in LISP 1.5. Communications of the
ACM, 21(7):565–569, 1978.

H. P. Barendregt, M. C. J. D. Eekelen, J. R. W. Glauert, J. R. Kennaway,
M. J. Plasmeijer, and M. R. Sleep. Term graph reduction. In Volume II:
Parallel Languages on PARLE: Parallel Architectures and Languages
Europe, pages 141–158, 1987.

Erik Barendsen and Sjaak Smetsers. Graph rewriting and copying. Techni-
cal Report 92-20, University of Nijmegen, 1992.

Adrienne Bloss. Update analysis and the efficient implementation of func-
tional aggregates. In FPCA ’89: Proceedings of the fourth international
conference on Functional programming languages and computer archi-
tecture, pages 26–38, New York, NY, USA, 1989. ACM.

Giuseppe Castagna. Covariance and contravariance: conflict without a
cause. ACM Trans. Program. Lang. Syst., 17(3):431–447, 1995.

Sylvain Conchon and Jean-Christophe Filliâtre. A persistent union-find data
structure. In ML ’07: Proceedings of the 2007 workshop on Workshop
on ML, pages 37–46, New York, NY, USA, 2007. ACM.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on Programming
Languages and Systems, 13(4):451–490, October 1991.

Martin Hofmann. A type system for bounded space and functional in-place
update. Nordic J. of Computing, 7(4):258–289, 2000.

Paul Hudak and Adrienne Bloss. The aggregate update problem in func-
tional programming systems. In POPL ’85: Proceedings of the 12th
ACM SIGACT-SIGPLAN symposium on Principles of programming lan-
guages, pages 300–314, New York, NY, USA, 1985. ACM.

Atsushi Igarashi and Mirko Viroli. On variance-based subtyping for para-
metric types. In ECOOP ’02: Proceedings of the 16th European Confer-
ence on Object-Oriented Programming, pages 441–469, London, UK,
2002. Springer-Verlag.

Yasuhiko Minamide. Static approximation of dynamically generated Web
pages. In Proceedings of the 14th International World Wide Web Con-
ference, pages 432–441. ACM Press, 2005.

Martin Odersky. How to make destructive updates less destructive. In POPL
’91: Proceedings of the 18th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 25–36, 1991.

Melissa E. O’Neill and F. Warren Burton. A new method for functional
arrays. Journal of Functional Programming, 7(5):487–514, September
1997.

Zhenyu Qian, Allen Goldberg, and Alessandro Coglio. A formal specifi-
cation of Java class loading. In Proc. 15th ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’00), volume 35 of ACM SIGPLAN Notices, pages 325–336, October
2000.

A. D. Robison. The Illinois functional programming interpreter. In SIG-
PLAN ’87: Papers of the Symposium on Interpreters and interpretive
techniques, pages 64–73, 1987.

Jacob T. Schwartz. Optimization of very high level languages, parts I, II.
Comput. Lang., 1(2-3):161–218, 1975.

Natarajan Shankar. Static analysis for safe destructive updates in a func-
tional language. In Proc. of LOPSTER 2001, 11th International Work-
shop on Logic Based Program Synthesis and Transformation, Paphos,
Cyprus, November 28-30, 2001, LNCS 2372, pages 1–24, 2001.

David N Turner, Philip Wadler, and Christian Mossin. Once upon a type.
In Functional Programming Languages and Computer Architecture, San
Diego, California, 1995.

P. Wadler. Linear types can change the world! In IFIP TC 2 Working
Conference on Programming Concepts and Methods, pages 347–359,
1990.

212

